
1Erika Rader – NASA Ames

Constraining cooling and eruption 
rates 
in Idaho and on the Moon

Artificial Spatter Piles: 
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1. What is spatter?
2. What can it tell us?
3. Experimental spatter piling up.
4. Can this be applied to real deposits?



What is spatter? -3

Spatter is :
an accumulation of fluid clasts that 

retain some semblance of their own shapes.                                        
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Spatter
Tephra
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Magmatic gas and vent region

http://www.grillnation.ro/27-05-2016-ce-este-un-gratar-cu-roca-vulcanica/
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Map based on Hooper (1997) volcano.oregonstate.edu/Columbia-river-flood-basalts



Basaltic eruptions are very common

But the timing is poorly constrained What can it tell us? -9
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• How does morphology relate to…

–Chemistry

–Process

–Age



What can it tell us? - 11

Spatter – the Goldilocks of basaltic morphologies

https://hvo.wr.usgs.gov/multimedia/archive/2002/Aug/20020802-0912_RPH_large.jpg



Theory: The degree of welding in a spatter pile is due to the accumulation rate of spatter 
clasts
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How do we get a cooling rate? - 13



Volcanic glass is ductile and will anneal above the 

glass transition temperature

How do we get a cooling rate? - 14



Modified from a diagram in Sumner et al. 2005

Classification of basaltic eruptive products
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What can it tell us? - 16

Lava flows show lateral consistency across long distances

10 km



Classification of basaltic eruptive products
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Sumner 1998
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What can it tell us? - 24

Flow

Spatter

Tephra

If we can put numbers on this diagram, can we constrain eruptive rates?
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1. What is spatter?
2. What can it tell us?
3. Experimental spatter piling up.
4. Can this be applied to real deposits?



Location of field work 

How do we get a cooling rate? -26

16 km



Location of field work

How do we get a cooling rate? -27

16 km
6 km

Devil’s Garden, OR Craters of the Moon, ID



How do we get a cooling rate? - 28



29How do we get a cooling rate? - 29

Realistic rates?
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What can it tell us? - 32

Flow

Spatter

Tephra

Controlled cube experiments suggests we can find the boundary between spatter and tephra
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Characteristics that should be correlated with overall high heat in a deposit

More connections
More squashed clasts (lower w/l ratio)
Less void space

Hotter deposit

Cooler deposit
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Data Collection
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5. Fused surface area
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What can it tell us? - 40

Flow

Spatter

Tephra
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Minimum conditions for welding
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Characteristics that should be correlated with overall high heat in a deposit

More connections
More squashed clasts (lower w/l ratio)
Less void space

Hotter deposit

Cooler deposit
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More connection: Amount of fusion between clasts is dependent on starting temp 
and time above 700oC.
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Squashed clasts: Temperature, time, and cooling rate are weakly correlated. 
Though can be overruled by shaping during flight.
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Void space: Well correlated with time and temperature. High heat = less void 
space.
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Vesicle mode: More vesicular at faster cooling rates, lower temp…. with 
caveats due to clast manipulation 
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Central cavity in clast: Found more often in cooler clasts or clasts that cooled 
quickly.
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1. What is spatter?
2. What can it tell us?
3. Experimental spatter piling up.
4. Can this be applied to real deposits?
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Numerical model to examine thermal history of deposit

How can we calculate accumulation rate? – 54
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Cooling rate 
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30 meters high = between 15 and 60
eruption hours to emplace 

50 m

COTM – 0.5-2 m/h. 



Can this be applied to other localities? - 58
Artist's rendering of LRO spacecraft.

Credits: NASA
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Marius Hills on the Moon
possible spatter cones



Can this be applied to other localities? - 60

Application to planetary science
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Cooling rate 

Craters of the Moon spatter

Time above 700oC 

Accumulation rate

6-9oC/min

Landing temperature
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1. By combining field observations, analytical experiments, and numerical modeling we have shown the 
boundary between explosive basaltic morphologies (cinder/spatter) can be quantified.
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1. By combining field observations, analytical experiments, and numerical modeling we have shown the 
boundary between explosive basaltic morphologies (cinder/spatter) can be quantified.

2. Clast length/width, vesicularity, and fusion are correlated to thermal history of the deposit. 
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1. By combining field observations, analytical experiments, and numerical modeling we have shown the 
boundary between explosive basaltic morphologies can be quantified.

2. Clast length/width, vesicularity, and fusion are correlated to thermal history of the deposit. 

3. Cooling rates above 10oC/min correlated with no fusing of clasts.
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1. By combining field observations, analytical experiments, and numerical modeling we have shown the 
boundary between explosive basaltic morphologies can be quantified.

2. Clast length/width, vesicularity, and fusion are correlated to thermal history of the deposit. 

3. Cooling rates above 10oC/min correlated with no fusing of clasts.

4. Lunar thermal regimes result is slower cooling, requiring slower accumulation rates, resulting in 
extended duration of deposition for the Marius Hills.  
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Thanks and Questions


